IJAIN (International Journal of Advances in Intelligent Informatics) (Nov 2020)
Lettuce growth stage identification based on phytomorphological variations using coupled color superpixels and multifold watershed transformation
Abstract
Identifying the plant's developmental growth stages from seed leaf is crucial to understand plant science and cultivation management deeply. An efficient vision-based system for plant growth monitoring entails optimum segmentation and classification algorithms. This study presents coupled color-based superpixels and multifold watershed transformation in segmenting lettuce plant from complicated background taken from smart farm aquaponic system, and machine learning models used to classify lettuce plant growth as vegetative, head development and for harvest based on phytomorphological profile. Morphological computations were employed by feature extraction of the number of leaves, biomass area and perimeter, convex area, convex hull area and perimeter, major and minor axis lengths of the major axis length the dominant leaf, and length of plant skeleton. Phytomorphological variations of biomass compactness, convexity, solidity, plant skeleton, and perimeter ratio were included as inputs of the classification network. The extracted Lab color space information from the training image set undergoes superpixels overlaying with 1,000 superpixel regions employing K-means clustering on each pixel class. Six-level watershed transformation with distance transformation and minima imposition was employed to segment the lettuce plant from other pixel objects. The accuracy of correctly classifying the vegetative, head development, and harvest growth stages are 88.89%, 86.67%, and 79.63%, respectively. The experiment shows that the test accuracy rates of machine learning models were recorded as 60% for LDA, 85% for ANN, and 88.33% for QSVM. Comparative analysis showed that QSVM bested the performance of optimized LDA and ANN in classifying lettuce growth stages. This research developed a seamless model in segmenting vegetation pixels, and predicting lettuce growth stage is essential for plant computational phenotyping and agricultural practice optimization.
Keywords