Laryngoscope Investigative Otolaryngology (Aug 2019)

Electrospun scaffolds limit the regenerative potential of the airway epithelium

  • Cynthia M. Schwartz,
  • Jacob Stack,
  • Cynthia L. Hill,
  • Scott W. Lallier,
  • Tendy Chiang,
  • Jed Johnson,
  • Susan D. Reynolds

DOI
https://doi.org/10.1002/lio2.289
Journal volume & issue
Vol. 4, no. 4
pp. 446 – 454

Abstract

Read online

Objective Significant morbidity and mortality are associated with clinical use of synthetic tissue‐engineered tracheal grafts (TETG). Our previous work focused on an electrospun polyethylene terephthalate and polyurethane (PET/PU) TETG that was tested in sheep using a long‐segment tracheal defect model. We reported that graft stenosis and limited epithelialization contributed to graft failure. The present study determined if the epithelialization defect could be attributed to: 1) postsurgical depletion of native airway basal stem/progenitor cells; 2) an inability of the PET/PU‐TETG to support epithelial migration; or 3) compromised basal stem/progenitor cell proliferation within the PET/PU environment. Study Design Experimental. Methods Basal stem/progenitor cell frequency in sheep that underwent TETG implantation was determined using the clone‐forming cell frequency (CFCF) method. A novel migration model that mimics epithelial migration toward an acellular scaffold was developed and used to compare epithelial migration toward a control polyester scaffold and the PET/PU scaffold. Basal stem/progenitor cell proliferation within the PET/PU scaffold was evaluated using the CFCF assay, doubling‐time analysis, and mitotic cell quantification. Results We report that TETG implantation did not decrease basal stem/progenitor cell frequency. In contrast, we find that epithelial migration toward the PET/PU scaffold was significantly less extensive than migration toward a polyester scaffold and that the PET/PU scaffold did not support basal stem/progenitor cell proliferation. Conclusions We conclude that epithelialization of a PET/PU scaffold is compromised by poor migration of native tissue‐derived epithelial cells and by a lack of basal stem/progenitor cell proliferation within the scaffold. Level of Evidence NA

Keywords