Selected Biochemical Markers Change after Oral Administration of Pesticide Mixtures in Honey Bees
Pawel Migdal,
Agnieszka Murawska,
Ewelina Berbeć,
Mateusz Plotnik,
Anita Skorus,
Krzysztof Latarowski
Affiliations
Pawel Migdal
Department of Environment, Hygiene and Animal Welfare, Bee Division, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
Agnieszka Murawska
Department of Environment, Hygiene and Animal Welfare, Bee Division, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
Ewelina Berbeć
Department of Environment, Hygiene and Animal Welfare, Bee Division, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
Mateusz Plotnik
Department of Environment, Hygiene and Animal Welfare, Bee Division, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
Anita Skorus
Department of Environment, Hygiene and Animal Welfare, Bee Division, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
Krzysztof Latarowski
Department of Human Nutrition, The Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
The honey bee is an important pollinator. In the environment, it can be exposed to many harmful factors, such as pesticides. Nowadays, attention is paid to evaluating the potentially harmful effects of these substances. This study aimed to evaluate the effect of worst-case environmental concentrations of pesticide mixtures on honey bee survival and selected physiological markers (the activity of ALT, AST, ALP, and GGTP, and the concentration of albumin, creatinine, urea, and uric acid). Pesticides of three different groups (insecticide—acetamiprid, herbicide—glyphosate, and fungicide—tebuconazole) and their mixtures were resolved in 50% (w/v) sucrose solution and given to bees ad libitum. After 24 h, hemolymph was collected. All mixtures caused higher mortality than single pesticides. Pesticides in mixtures caused disturbances in biochemical markers, and in some cases the interaction between pesticides was synergistic. The mixtures had individual effects on physiology, and the results were sensitive to changes in proportions.