Quantum Reports (Mar 2023)

Set Theory and Many Worlds

  • Paul Tappenden

DOI
https://doi.org/10.3390/quantum5010016
Journal volume & issue
Vol. 5, no. 1
pp. 237 – 252

Abstract

Read online

The 2022 Tel Aviv conference on the many-worlds interpretation of quantum mechanics highlighted many differences between theorists. A very significant dichotomy is between Everettian fission (splitting) and Saunders–Wallace–Wilson divergence. For fission, an observer may have multiple futures, whereas for divergence they always have a single future. Divergence was explicitly introduced to resolve the problem of pre-measurement uncertainty for Everettian theory, which is universally believed to be absent for fission. Here I maintain that there is indeed pre-measurement uncertainty prior to fission, so long as objective probability is a property of Everettian branches. This is made possible if the universe is a set and branches are subsets with a probability measure. A universe that is a set of universes that are macroscopically isomorphic and span all possible configurations of local beäbles fulfills that role. If objective probability is a property of branches, then a successful Deutsch–Wallace decision-theoretic argument would justify the Principal Principle and be part of probability theory rather than specific to many-worlds theory. Any macroscopic object in our environment becomes a set of isomorphs with different microscopic configurations, each in an elemental universe (elemental in the set-theoretic sense). This is similar to the many-interacting-worlds theory, but the observer inhabits the set of worlds, not an individual world. An observer has many elemental bodies.

Keywords