Virology Journal (Oct 2021)

Porcine reproductive and respiratory syndrome virus genetic variability a management and diagnostic dilemma

  • Jessica Risser,
  • Matthew Ackerman,
  • Robert Evelsizer,
  • Stephen Wu,
  • Byungjoon Kwon,
  • James Mark Hammer

DOI
https://doi.org/10.1186/s12985-021-01675-0
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 12

Abstract

Read online

Abstract As genetic analysis becomes less expensive, more comprehensive diagnostics such as whole genome sequencing (WGS) will become available to the veterinary practitioner. The WGS elucidates more about porcine reproductive and respiratory syndrome virus (PRRSV) beyond the traditional analysis of open reading frame (ORF) 5 Sanger sequencing. The veterinary practitioner will require a more complete understanding of the mechanics and consequences of PRRSV genetic variability to interpret the WGS results. More recently, PRRSV recombination events have been described in the literature. The objective of this review is to provide a comprehensive outlook for swine practitioners that PRRSV mutates and recombines naturally causing genetic variability, review the diagnostic cadence when suspecting recombination has occurred, and present theory on how, why, and where industry accepted management practices may influence recombination. As practitioners, it is imperative to remember that PRRS viral recombination is occurring continuously in swine populations. Finding a recombinant by diagnostic analysis does not ultimately declare its significance. The error prone replication, mutation, and recombination of PRRSV means exact clones may exist; but a quasispecies swarm of variable strains also exist adding to the genetic diversity. PRRSV nonstructural proteins (nsps) are translated from ORF1a and ORF1b. The arterivirus nsps modulate the hosts’ immune response and are involved in viral pathogenesis. The strains that contribute the PRRSV replicase and transcription complex is driving replication and possibly recombination in the quasispecies swarm. Furthermore, mutations favoring the virus to evade the immune system may result in the emergence of a more fit virus. More fit viruses tend to become the dominant strains in the quasispecies swarm. In theory, the swine management practices that may exacerbate or mitigate recombination include immunization strategies, swine movements, regional swine density, and topography. Controlling PRRSV equates to managing the quasispecies swarm and its interaction with the host. Further research is warranted on the frequency of recombination and the genome characteristics impacting the recombination rate. With a well-defined understanding of these characteristics, the clinical implications from recombination can be detected and potentially reduced; thus, minimizing recombination and perhaps the emergence of epidemic strains.

Keywords