Life (Sep 2021)

Continuous Feeding Reduces the Generation of Metabolic Byproducts and Increases Antibodies Expression in Chinese Hamster Ovary-K1 Cells

  • Shang Xiao,
  • Waqas Ahmed,
  • Ali Mohsin,
  • Meijin Guo

DOI
https://doi.org/10.3390/life11090945
Journal volume & issue
Vol. 11, no. 9
p. 945

Abstract

Read online

Chinese hamster ovary (CHO) cells are the most important host system used for monoclonal antibody (mAb) expression. Moreover, the fed-batch culture mode is the most widely used method to increase mAb expression in CHO cells by increasing the amount of feed. However, a high amount of culture feed results in the production of metabolic byproducts. In this work, we used a continuous feeding strategy to reduce metabolic byproducts and improve mouse–human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 expression in Chinese hamster ovary-K1 cells. Moreover, the effects of the feeding strategy on the cell culture and monoclonal antibody production were evaluated in chemically defined suspension cultures of recombinant CHO-K1 cells. Compared with bolus feeding methods, the continuous feeding method did not have any advantages when the feeding amount was low, but with a high feeding amount, the continuous feeding method significantly reduced the concentrations of lactate and NH4+ in the later culture stage. At the end of the culture stage, compared with bolus feeding methods, the lactate and NH4+ concentrations under the continuous feeding mode were reduced by approximately 45% and 80%, respectively. In addition, the antibody C12 expression level was also increased by almost 10%. Compared to the bolus feeding method, the antibody C12 produced by the continuous feeding method had a lower content of high-mannose glycoforms. Further analysis found that the osmolality of the continuous feeding method was lower than that of the typical fed-batch bolus feeding method. Conclusively, these results indicate that the continuous feeding method is very useful for reducing metabolic byproducts and achieving higher levels of mAb production.

Keywords