Current sensing solutions must combine an ultra-low energy consumption trend with high reliability. The challenge lies on a fine setting of the detection threshold with the assurance of a sufficient sensitivity. In this article, the uncertainty introduced on gas sensing applications by the inherent sensor noise is studied. A 1/f model of the electronic noise in polypyrrole-based ammonia (NH3) sensors is presented and used to estimate the intrinsic signal-to-noise ratio (SNR), giving an effective precision of 10.7 bits, i.e., down to 31.4 ppb in terms of NH3 concentration. No significant improvement in SNR is achieved by increasing the bias voltage and hence the power consumption.