Entropy (Nov 2017)

Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study

  • Hoo-Suk Oh,
  • Youngseog Lee,
  • Ho-Young Kwak

DOI
https://doi.org/10.3390/e19120643
Journal volume & issue
Vol. 19, no. 12
p. 643

Abstract

Read online

In this study, diagnosis of a 300-MW combined cycle power plant under faulty conditions was performed using a thermoeconomic method called modified productive structure analysis. The malfunction and dysfunction, unit cost of irreversibility and lost cost flow rate for each component were calculated for the cases of pre-fixed malfunction and the reference conditions. A commercial simulating software, GateCycleTM (version 6.1.2), was used to estimate the thermodynamic properties under faulty conditions. The relative malfunction (RMF) and the relative difference in the lost cost flow rate between real operation and reference conditions (RDLC) were found to be effective indicators for the identification of faulty components. Simulation results revealed that 0.5% degradation in the isentropic efficiency of air compressor, 2% in gas turbine, 2% in steam turbine and 2% degradation in energy loss in heat exchangers can be identified. Multi-fault scenarios that can be detected by the indicators were also considered. Additional lost exergy due to these types of faulty components, that can be detected by RMF or RDLC, is less than 5% of the exergy lost in the components in the normal condition.

Keywords