International Journal of Analytical Chemistry (Jan 2022)

Human Health Risk Prediction Method of Regional Atmospheric Environmental Pollution Sources Based on PMF and PCA Analysis under Artificial Intelligence Cloud Model

  • Shihui Zhang,
  • Xinghua Sun,
  • Naidi Liu,
  • Jing Mi

DOI
https://doi.org/10.1155/2022/7207020
Journal volume & issue
Vol. 2022

Abstract

Read online

In order to solve the problem that atmospheric particulate matter has become the primary pollutant with serious harm and complex sources in recent years, this paper proposes an accurate identification method of pollution sources based on a receptor model to obtain the contribution rate of each pollution source category. This method takes the 75-day measured environmental receptor data of an area under the artificial intelligence cloud model as the basic data, uses the normrnd () function to expand the receptor data, and uses the positive definite matrix factor analysis (PMF) and principal component analysis (PCA) models to verify the rationality of the data expansion. The results are as follows: the number of extended simulated receptor component spectra has a certain effect on the PCA analysis results, but the effect is smaller than the extended range. All relative errors are less than 14%, and the relative error is the smallest when the six simulated receptor component spectra are expanded, that is, the PCA analysis results of the expanded data are most consistent with the measured data; the number of expanded simulated receptor component spectra has a certain influence on the PMF analysis results. But the relative error is less than 40%. When extending the spectrum of six simulated receptor components, the relative error is the smallest, that is, the PMF analysis results of the extended data are most consistent with the measured data. It is proven that this method provides a more direct basis for the targeted treatment of pollution sources that are more harmful to human health.