Life (Aug 2024)

New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants

  • Cristina Grosu (Dumitrescu),
  • Alex-Robert Jîjie,
  • Horaţiu Cristian Manea,
  • Elena-Alina Moacă,
  • Andrada Iftode,
  • Daliana Minda,
  • Raul Chioibaş,
  • Cristina-Adriana Dehelean,
  • Cristian Sebastian Vlad

DOI
https://doi.org/10.3390/life14081019
Journal volume & issue
Vol. 14, no. 8
p. 1019

Abstract

Read online

The present review explores the underlying mechanisms of phytophotodermatitis, a non-immunologic skin reaction triggered by certain plants followed by exposure to ultraviolet radiation emitted by sunlight. Recent research has advanced our understanding of the pathophysiology of phytophotodermatitis, highlighting the interaction between plant-derived photosensitizing compounds (e.g., furanocoumarins and psoralens) and ultraviolet light leading to skin damage (e.g., erythema, fluid blisters, edema, and hyperpigmentation), identifying these compounds as key contributors to the phototoxic reactions causing phytophotodermatitis. Progress in understanding the molecular pathways involved in the skin’s response to these compounds has opened avenues for identifying potential therapeutic targets suitable for the management and prevention of this condition. The review emphasizes the importance of identifying the most common phototoxic plant families (e.g., Apiaceae, Rutaceae, and Moraceae) and plant species (e.g., Heracleum mantegazzianum, Ruta graveolens, Ficus carica, and Pastinaca sativa), as well as the specific phytochemical compounds responsible for inducing phytophototoxicity (e.g., limes containing furocoumarin have been linked to lime-induced photodermatitis), underscoring the significance of recognizing the dangerous plant sources. Moreover, the most used approaches and tests for accurate diagnosis such as patch testing, Wood’s lamp examination, or skin biopsy are presented. Additionally, preventive measures such as adequate clothing (e.g., long-sleeved garments and gloves) and treatment strategies based on the current knowledge of phytophotodermatitis including topical and systemic therapies are discussed. Overall, the review consolidates recent findings in the field, covering a diverse array of phototoxic compounds in plants, the mechanisms by which they trigger skin reactions, and the implications for clinical management. By synthesizing these insights, we provide a comprehensive understanding of phytophotodermatitis, providing valuable information for both healthcare professionals and researchers working to address this condition.

Keywords