Results in Physics (Mar 2019)

Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal

  • Wanchong Li,
  • Lihai Lin,
  • Chusen Li,
  • Yan Wang,
  • Jinsong Zhang

Journal volume & issue
Vol. 12
pp. 278 – 286

Abstract

Read online

A broadband radar absorbing combinatorial foam metamaterial (CFMM) was developed and evaluated via simulation and experimentation. CFMM was constructed using silicon carbide/carbon (SiC/C) foam material, a FR4 dielectric material, and a metal pattern. The SiC/C foam material was prepared using a template. The metal pattern consists of a square ring with four split gaps in the middle of the ring. As a result of this new design, the influence of metal pattern design geometrical dimensions on the absorption performance of CFMM were discussed, as absorption performance can be adjusted by changing the geometric parameters of the metal patterns. The physical absorption mechanism was clarified through analysis of the field distribution and impedance. Finally, a lightweight broadband CFMM was designed. The designed CFMM exhibit a −10 dB absorption bandwidth from 4 GHz to 18 GHz with a total bulk density of 0.56 g/cm3. Additionally, the absorption performance of the designed CFMM in the case of oblique incidence was studied. Keywords: Foam materials, Metamaterial, Radar absorption performance