Arabian Journal of Chemistry (Apr 2023)

A dual-functional chemosensor based on acylhydrazone derivative for rapid detection of Zn(II) and Mg(II): Spectral properties, recognition mechanism and application studies

  • Yongjie Ding,
  • Chunxiang Zhao,
  • Pengcheng Zhang,
  • Yahong Chen,
  • Jianping Xie,
  • Weiwu Song,
  • Zengchen Liu,
  • Guanglu Liu,
  • Xinyu Zheng

Journal volume & issue
Vol. 16, no. 4
p. 104603

Abstract

Read online

In this work, an acylhydrazone derivative (QN62) was developed via the one-step condensation of 6-hydroxy-2-naphthoic hydrazide with quinoline-8-carboxaldehyde. The structure of the QN62 compound was characterized by 1H NMR, 13C NMR, HR-MS (ESI), and X-ray crystallography. As a dual-functional turn-on fluorescence chemosensor, QN62 exhibited rapid recognition for Zn2+ in DMSO-H2O (4:1, v/v) and Mg2+ in ethanol-H2O (9:1, v/v). The enhancement in fluorescence detection was associated with the coordination reaction between QN62 and the target ions, which promoted intramolecular charge transfer and prevented the CN isomerization process. Simultaneously, a rapid color change from colorless to yellowish-green or yellow under UV light (365 nm) was easily visible to the naked eye. Under optimal conditions, the limit of detection and limit of quantification were 32.3 nM and 97.8 nM for Zn2+ and 16.1 nM and 48.9 nM for Mg2+, respectively. The recognition mechanism was reasonably speculated based on analysis of the Job’s plot, HR-MS, 1H NMR, and density functional theoretical calculations. Utilizing silica-gel plates fabricated from the QN62 chemosensor, the visual and rapid identification of Zn2+ and Mg2+ was successfully achieved, which could provide a convenient approach for on-site detection in environmental fields. The QN62 chemosensor could also quantify trace amounts of Zn2+ and Mg2+ in water samples. Furthermore, the cell imaging experiments indicated that QN62 could effectively sense intracellular Zn2+ and Mg2+, providing potential applications in biological systems.

Keywords