PRX Quantum (May 2025)

High-Fidelity Universal Gates in the ^{171}Yb Ground-State Nuclear-Spin Qubit

  • J. A. Muniz,
  • M. Stone,
  • D. T. Stack,
  • M. Jaffe,
  • J. M. Kindem,
  • L. Wadleigh,
  • E. Zalys-Geller,
  • X. Zhang,
  • C.-A. Chen,
  • M. A. Norcia,
  • J. Epstein,
  • E. Halperin,
  • F. Hummel,
  • T. Wilkason,
  • M. Li,
  • K. Barnes,
  • P. Battaglino,
  • T. C. Bohdanowicz,
  • G. Booth,
  • A. Brown,
  • M. O. Brown,
  • W. B. Cairncross,
  • K. Cassella,
  • R. Coxe,
  • D. Crow,
  • M. Feldkamp,
  • C. Griger,
  • A. Heinz,
  • A. M. W. Jones,
  • H. Kim,
  • J. King,
  • K. Kotru,
  • J. Lauigan,
  • J. Marjanovic,
  • E. Megidish,
  • M. Meredith,
  • M. McDonald,
  • R. Morshead,
  • S. Narayanaswami,
  • C. Nishiguchi,
  • T. Paule,
  • K. A. Pawlak,
  • K. L. Pudenz,
  • D. Rodríguez Pérez,
  • A. Ryou,
  • J. Simon,
  • A. Smull,
  • M. Urbanek,
  • R. J. M. van de Veerdonk,
  • Z. Vendeiro,
  • T.-Y. Wu,
  • X. Xie,
  • B. J. Bloom

DOI
https://doi.org/10.1103/prxquantum.6.020334
Journal volume & issue
Vol. 6, no. 2
p. 020334

Abstract

Read online Read online

Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate set with individually controlled and parallel application of single-qubit gates and two-qubit gates operating on the ground-state nuclear-spin qubit in arrays of tweezer-trapped ^{171}Yb atoms. We utilize the long lifetime, flexible control, and high gate fidelity of our system to characterize native gates using single- and two-qubit Clifford and symmetric subspace randomized-benchmarking circuits with more than 200 controlled-Z (cz) gates applied to one or two pairs of atoms. We measure our two-qubit entangling gate fidelity to be 99.72(3)% (99.40(3)%) with (without) postselection. In addition, we introduce a simple and optimized method for calibration of multiparameter quantum gates. These results represent important milestones toward executing complex and general quantum computation with neutral atoms.