Annals of the West University of Timisoara: Mathematics and Computer Science (May 2023)
Determinant Inequalities for Positive Definite Matrices Via Diananda’s Result for Arithmetic and Geometric Weighted Means
Abstract
In this paper we prove among others that, if (Aj)j=1,...,m are positive definite matrices of order n ≥ 2 and qj ≥ 0, j = 1, ..., m with ∑j=1mqj=1$$\sum\nolimits_{j = 1}^m {{q_j} = 1} $$, then 0≤11−mini∈{1,…,m}{qi}×[∑i=1mqi(1−qi)[det(Ai)]−1−2n+1∑1≤i<j≤mqiqj[det(Ai+Aj)]−1]≤∑i=1mqi[det(Ai)]−1−[det(∑i=1mqiAi)]−1≤1mini∈{1,…,m}{qi}×[∑i=1mqi(1−qi)[det(Ai)]−1−2n+1∑1≤i<j≤mqiqj[det(Ai+Aj)]−1].
Keywords