IEEE Access (Jan 2022)

High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication

  • Zuhaib Khan,
  • Yung-Hao Chang,
  • Te-Lieh Pan,
  • Yaung-Cheng Zhao,
  • Yen-Yu Huang,
  • Chia-Hung Lee,
  • Jui-Sheng Chang,
  • Cheng-Yi Liu,
  • Cheng-Yuan Lee,
  • Chao-Yi Fang,
  • Jin-Wei Shi

DOI
https://doi.org/10.1109/ACCESS.2021.3133436
Journal volume & issue
Vol. 10
pp. 2303 – 2317

Abstract

Read online

The development of high-speed and high-brightness vertical-cavity surface-emitting lasers (VCSELs), which can serve as an efficient light source for optical wireless communication (OWC), play a crucial role in growth of the next generation of wireless communication networks, e.g., 6 G and satellite communications. In this work, by optimizing the size of the Zn-diffusion and oxide-relief apertures in a high-speed 850 nm VCSEL, we obtain record-high brightness (2.9 MW ${\mathrm {cm}}^{-2}{\mathrm {sr}}^{-1}$ at 10 mW output) with single polarized and (quasi-) single-mode (SM) outputs under continuous wave (CW) operation. However, such high brightness output comes at the cost of spatial hole burning (SHB) effect and degraded quality of 25 Gbit/sec eye patterns. In addition, an SM VSCEL array structure is usually needed to further boost the total available optical power for long-reach OWC. Here, a novel (quasi-) SM VCSEL array structure is demonstrated which releases the trade-off between the performances of brightness and eye-pattern quality. Our demonstrated array has a special crisscross mesa connecting neighboring VCSEL units and an extra electroplated copper substrate integrated on the backside of the chip. Compared to the reference array without the copper substrate and connected active mesas, the demonstrated array exhibits a higher (quasi-) SM output power, narrower divergence angle, larger orthogonal polarization mode suppression ratio (OPSR), and flatter E-O response. This in turn leads to smaller jitter and less noise in the measured 12.5 Gbit/sec eye-patterns. The demonstrated $7\times 7$ array exhibits a maximum SM power of around 90 mW with a 1/ $\text{e}^{2}$ divergence angle as narrow as 7o (FWHM: 5o), single polarized output (10 dB OPSR), decent relative intensity noise performance (<−130 dB/Hz) and clear 12.5 Gbit/sec eye-opening. Such new device with remarkable static/dynamic performances has strong potential to further improve the product of the linking distance and data rate in the next generation of OWC channels.

Keywords