Land (Feb 2022)
Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes
Abstract
Enhanced soil’s magnetic susceptibility reflects particles of anthropogenic/natural origin; therefore, it can be utilized as an indication of soil contamination. A total of 51 different land-use soil samples collected from Greater Cairo, Egypt, were assessed integrally using potentially toxic elements content (PTEs), magnetic susceptibility, and statistical and spatial analysis. PTE concentrations were compared to the world average, threshold, and screening values set by literature. Various environmental indices were estimated to assess soil contamination with these elements. Spatial distribution maps of PTEs and environmental indices were constructed to provide decision makers with a certain identification of riskier areas. In general, the concentrations of the analyzed PTEs showed variation with land-use types and follows a pattern of: Industrial > Agricultural > Urban. The distribution of PTEs in Greater Cairo was influenced by several anthropogenic sources, including traffic emission, industrial activity, and agricultural practices. The measured magnetic susceptibility values indicate magnetically enhanced soil signals dominated by multi-domain or pseudo-single-domain superparamagnetic particles of anthropogenic origin. A significant association was observed between magnetic susceptibility values and Co, Cr, Cu, Ni, and V, and the calculated environmental indices. It can be concluded that magnetic susceptibility is of proven effectivity in the assessment of soil contamination.
Keywords