Nanoscintillator Coating: A Key Parameter That Strongly Impacts Internalization, Biocompatibility, and Therapeutic Efficacy in Pancreatic Cancer Models
Clémentine Aubrun Fulbert,
Frédéric Chaput,
Sarah Stelse‐Masson,
Maxime Henry,
Benoit Chovelon,
Sylvain Bohic,
Dennis Brueckner,
Jan Garrevoet,
Christine Moriscot,
Benoit Gallet,
Julien Vollaire,
Olivier Nicoud,
Frédéric Lerouge,
Sandrine Denis‐Quanquin,
Xavier Jaurand,
Thibault Jacquet,
Anthony Nomezine,
Véronique Josserand,
Jean‐Luc Coll,
Jean‐Luc Ravanat,
Hélène Elleaume,
Anne‐Laure Bulin
Affiliations
Clémentine Aubrun Fulbert
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Frédéric Chaput
Université de Lyon Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 46 Allée d’Italie F69364 Lyon France
Sarah Stelse‐Masson
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Maxime Henry
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Benoit Chovelon
Université Grenoble Alpes Département de Pharmacochimie Moléculaire, CNRS, UMR 5063 F‐38041 Grenoble France
Sylvain Bohic
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Université Grenoble Alpes EMBL, Integrated Structural Biology Grenoble (ISBG), UAR 3518, CNRS, CEA 71 avenue des Martyrs F‐38042 Grenoble France
Benoit Gallet
Université Grenoble Alpes Institut de Biologie Structurale (IBS), CEA, CNRS 38000 Grenoble France
Julien Vollaire
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Olivier Nicoud
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Frédéric Lerouge
Université de Lyon Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 46 Allée d’Italie F69364 Lyon France
Sandrine Denis‐Quanquin
Université Lyon 1 Centre Technologique des Microstructures F‐69622 Villeurbanne France
Xavier Jaurand
Université Lyon 1 Centre Technologique des Microstructures F‐69622 Villeurbanne France
Thibault Jacquet
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Anthony Nomezine
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Véronique Josserand
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Jean‐Luc Coll
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Jean‐Luc Ravanat
Université Grenoble Alpes, CEA, CNRS, Grenoble INP, SyMMES UMR 5819 F‐38000 Grenoble France
Hélène Elleaume
Université Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine Grenoble France
Anne‐Laure Bulin
Université Grenoble Alpes INSERM U 1209, CNRS UMR 5309, Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences 38000 Grenoble France
Pancreatic cancer is associated with a poor prognosis despite multimodal treatments. To improve the efficacy of radiotherapy, the use of nanoscintillators is emerging. Made of high‐Z elements, they absorb X‐rays more efficiently than tissues and can locally enhance the radiation dose provided they have accumulated near tumor cells. This study focuses on the role of the coating, a key parameter that controls both in vitro and in vivo properties of nanoparticles, including their internalization, biocompatibility, and therapeutic efficacy. Polyethylene glycol and tripolyphosphate molecules are used to coat lanthanum fluoride nanoscintillators, and their properties are evaluated on pancreatic cancer models. The experiments demonstrate a higher internalization of the nanoparticles when coated with tripolyphosphate, in both 2D and 3D culture models, correlating with greater efficacy under X‐rays, which may be associated with higher radiation dose‐enhancement. The nanoparticles are also injected intravenously in healthy or tumor‐bearing mice in order to study their toxicity, pharmacokinetics, and biodistribution. Despite a strong liver and spleen accumulation, especially for the tripolyphosphate‐coated nanoparticles, no toxicity is observed for either coating. Because they show promising radiation dose‐enhancement in vitro in both culture models and a limited toxicity in vivo, polyethylene glycol‐coated nanoparticles are good candidates for biomedical applications.