Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus)
Carmen G. Hernández-Valencia,
Angélica Román-Guerrero,
Ángeles Aguilar-Santamaría,
Luis Cira,
Keiko Shirai
Affiliations
Carmen G. Hernández-Valencia
Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Iztapalapa, 09340 Mexico City, Mexico
Angélica Román-Guerrero
Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Iztapalapa, 09340 Mexico City, Mexico
Ángeles Aguilar-Santamaría
Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Iztapalapa, 09340 Mexico City, Mexico
Luis Cira
Biotechnology and Food Science Department, Instituto Tecnologico de Sonora, 5 de febrero No. 818 sur, 85000 Obregon City, Sonora, Mexico
Keiko Shirai
Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Iztapalapa, 09340 Mexico City, Mexico
The market trend for pitaya is increasing, although the preservation of the quality of this fruit after the harvest is challenging due to microbial decay, dehydration, and oxidation. In this work, the application of antimicrobial chitosan-based coatings achieved successful postharvest preservation of pitaya (Stenocereus pruinosus) during storage at 10 ± 2 °C with a relative humidity of 80 ± 5%. The solution of cross-linked chitosan with hydroxypropylmethylcellulose with entrapped Neem oil (16 g·L−1) displayed the best postharvest fruit characteristics. The reduction of physiological weight loss and fungal contamination, with an increased redness index and release of azadirachtin from the microencapsulated oil, resulted in up to a 15 day shelf life for this fruit. This postharvest procedure has the potential to increase commercial exploitation of fresh pitaya, owing to its good taste and high content of antioxidants.