Remote Sensing (Jul 2022)
Determining Tropical Cyclone Center and Rainband Size in Geostationary Satellite Imagery
Abstract
Brightness temperature (TB) observations at an infrared channel (10.3 μm) of the Advanced Baseline Imager (ABI) on board the U. S. 16th Geostationary Operational Environmental Satellite (GOES-16) are used for determining tropical cyclone (TC) center positions and rainband sizes. Firstly, an azimuthal spectral analysis method is employed to obtain an azimuthally symmetric center of a TC. Then, inner and outer rainbands radii, denoted as RIR and ROR, respectively, are estimated based on radial gradients of TB observations at different azimuthal angles. The radius RIR describes the size of the TC inner-core region, and the radius ROR reflects the maximum radial extent of TC rainbands. Compared with the best track centers, the root mean square differences of ABI-determined centers for tropical storms and hurricanes, which totals 108 samples, are 45.35 and 29.06 km, respectively. The larger the average wavenumber-0 amplitude, the smaller the difference between the ABI-determined center and the best track center. The TB-determined RIR is close but not identical to the radius of the outermost closed isobar and usually coincides with the radius where the strongest wavenumber 1 asymmetry is located. The annulus defined by the two circles with radii of ROR and RIR is the asymmetric area of rainbands described by azimuthal wavenumbers 1–3. In general, amplitudes of wavenumber 0 component centered on the ABI-determined center are greater than or equal to those from the best track. For a case of a 60 km distance between the ABI-determined and the best track TC center, the innermost azimuthal waves of wavenumbers 1–3 are nicely distributed along or within the radial distance RIR that is determined based on the ABI-determined TC center. If RIR is determined based on the best track, the azimuthal waves of wavenumbers 1–3 are found at several radial distances that are smaller than RIR. The TC center positions, and rainband size radii are important for many applications, including specification of a bogus vortex for hurricane initialization and verification of propagation mechanism of vortex Rossby waves.
Keywords