Solar Energy Advances (Jan 2023)
On the properties of residential rooftop azimuth and tilt uncertainties for photovoltaic power generation modeling and hosting capacity analysis
Abstract
One of the essential epistemic uncertainties that has not yet been studied enough for distributed photovoltaic systems is the azimuth and tilt of rooftop photovoltaic panels, as previous studies of grid impacts and hosting capacity have tended to assume uniform and optimal roof facet conditions. In this study, rooftop facet orientation distributions are presented and analyzed for all single-family buildings in the Swedish city of Uppsala, based on LiDAR-based data that consist of every roof facet from the around 13,500 single-family buildings in the city. From these distributions, novel methods to proportionally include less suitable roofs for every penetration level are proposed using a simple method based on normal and uniform probability density functions, and are tested for both time-series and stochastic hosting capacity analysis. The results show that under the assumption that the best roof facets are utilized first, a uniform distribution for rooftop facet azimuth and a normal distribution for rooftop facet tilt with parameters that depend linearly on the penetration level were shown to be accurate. The hosting capacity simulations demonstrate how the proposed methods perform significantly better in estimating the photovoltaic hosting capacity than the more common simplified methods for both time-series and stochastic hosting capacity analysis. The proposed model could help distribution system operators as well as researchers in this area to model the rooftop facet orientation uncertainty better and improve the quality of aggregated photovoltaic generation models and hosting capacity analyses.