Cells (Jan 2020)

Hypoxic Adaptation of Mitochondrial Metabolism in Rat Cerebellum Decreases in Pregnancy

  • Anastasia Graf,
  • Lidia Trofimova,
  • Alexander Ksenofontov,
  • Lyudmila Baratova,
  • Victoria Bunik

DOI
https://doi.org/10.3390/cells9010139
Journal volume & issue
Vol. 9, no. 1
p. 139

Abstract

Read online

Function of brain amino acids as neurotransmitters or their precursors implies changes in the amino acid levels and/or metabolism in response to physiological and environmental challenges. Modelling such challenges by pregnancy and/or hypoxia, we characterize the amino acid pool in the rat cerebellum, quantifying the levels and correlations of 15 amino acids and activity of 2-oxoglutarate dehydrogenase complex (OGDHC). The parameters are systemic indicators of metabolism because OGDHC limits the flux through mitochondrial TCA cycle, where amino acids are degraded and their precursors synthesized. Compared to non-pregnant state, pregnancy increases the cerebellar content of glutamate and tryptophan, decreasing interdependence between the quantified components of amino acid metabolism. In response to hypoxia, the dependence of cerebellar amino acid pool on OGDHC and the average levels of arginine, glutamate, lysine, methionine, serine, phenylalanine, and tryptophan increase in non-pregnant rats only. This is accompanied by a higher hypoxic resistance of the non-pregnant vs. pregnant rats, pointing to adaptive significance of the hypoxia-induced changes in the cerebellar amino acid metabolism. These adaptive mechanisms are not effective in the pregnancy-changed metabolic network. Thus, the cerebellar amino acid levels and OGDHC activity provide sensitive markers of the physiology-dependent organization of metabolic network and its stress adaptations.

Keywords