Computation (Apr 2024)

Recent Developments in Using a Modified Transfer Matrix Method for an Automotive Exhaust Muffler Design Based on Computation Fluid Dynamics in 3D

  • Mihai Bugaru,
  • Cosmin-Marius Vasile

DOI
https://doi.org/10.3390/computation12040073
Journal volume & issue
Vol. 12, no. 4
p. 73

Abstract

Read online

The present work aims to investigate the newly modified transfer matrix method (MTMM) to predict an automotive exhaust muffler’s transmission loss (AEMTL). The MTMM is a mixed method between a 3D-CFD (Computation Fluid Dynamics in 3D), namely AVL FIRETM M Engine (process-safe 3D-CFD Simulations of Internal Combustions Engines), and the classic TMM for the exhaust muffler. For all the continuous and discontinuous sections of the exhaust muffler, the Mach number of the cross-section, the temperature, and the type of discontinuity of the exhaust gas flow were taken into consideration to evaluate the specific elements of the acoustic quadrupole that define the MTMM coupled with AVL FIRETM M Engine for one given muffler exhaust. Also, the perforations of intermediary ducts were considered in the new MTMM (AVL FIRETM M Engine linked with TMM) to predict the TL (transmission loss) of an automotive exhaust muffler with three expansion chambers. The results obtained for the TL in the frequency range 0.1-4 kHz agree with the experimental results published in the literature. The TMM was improved by adding the AVL FIRETM M Engine as a valuable tool in designing the automotive exhaust muffler (AEM).

Keywords