Scientific Reports (Apr 2024)

On the crashworthiness analysis of bio-inspired DNA tubes

  • Amir Najibi,
  • Liwen Zhang,
  • Dongli Zheng

DOI
https://doi.org/10.1038/s41598-024-59258-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 17

Abstract

Read online

Abstract This study presents a thorough numerical evaluation of the crashworthiness properties of a new bio-inspired DNA tubes (BIDNATs) with circular, elliptical, and rectangular cross-sections. Deformation and crashworthiness behaviors are evaluated using axial quasi-static crushing simulations by ABAQUS/Explicit (Abaqus 6.14, https://www.3ds.com/products-services/simulia/products/abaqus/ ). The study compares the performance of conventional tubes with rectangular and elliptical cross-sections to DNA-inspired tubes. Increasing the rotation angle leads to more helices and a pronounced helix angle, resulting in lower initial peak force (IPF). However, lower cross-section aspect ratios generally have higher IPF and specific energy absorption (SEA) values. BIDNATs with rectangular cross-sections and a 540° rotation angle have the lowest SEA and IPF values across all aspect ratios. Notably, for the 110/100 aspect ratio, the SEA of E110/100 is 71% higher than the conventional tube. Overall, BIDNATs with elliptical cross-sections and a 360° rotation angle exhibit higher SEA values and lower IPF values, particularly for a width (W) of 100 mm. Conventional circular and elliptical tubes generally have SEA values exceeding 6 J/g, with only E110/100 surpassing this among DNA-inspired tubes. The NE110/100 tube has the highest SEA, surpassing E110/100 by 54%, while its IPF is 10% greater than DNA-inspired E110/100. It's worth noting that conventional circular and elliptical tubes have higher IPF values compared to their DNA-inspired counterparts. These findings offer valuable insights for engineers and researchers in the design of crash tubes to improve overall vehicle safety for both occupants and pedestrians.

Keywords