Regulation of Ce (Ⅲ) / Ce (Ⅳ) ratio of cerium oxide for antibacterial application
Haifeng Zhang,
Jiajun Qiu,
Bangcheng Yan,
Lidan Liu,
Dafu Chen,
Xuanyong Liu
Affiliations
Haifeng Zhang
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Jiajun Qiu
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Bangcheng Yan
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Lidan Liu
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Dafu Chen
Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China; Corresponding author
Xuanyong Liu
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Corresponding author
Summary: Antibiotics have been considered as effective weapons against bacterial infections since they were discovered. However, antibiotic resistance caused by overuse and abuse of antibiotics is an emerging public health threat nowadays. Fully defeating bacterial infections has become a tough challenge. In this work, cerium oxide was fabricated on medical titanium by thermolysis of cerium-containing metal-organic framework (Ce-BTC). Regulation of Ce (Ⅲ)/Ce (Ⅳ) ratios was realized by pyrolysis of Ce-BTC in different gas environment, and the antibacterial properties were studied. The results indicated that, in acidic conditions, ceria with a high Ce (Ⅲ)/Ce (Ⅳ) ratio owned high oxidase-like activity which could produce reactive oxygen species. Moreover, ceria with high Ce (Ⅲ) content possessed strong ATP deprivation capacity which could cut off the energy supply of bacteria. Based on this, ceria with a high Ce (Ⅲ)/Ce (Ⅳ) ratio exhibited superior antibacterial activity