Journal of Enzyme Inhibition and Medicinal Chemistry (Dec 2024)

Structure optimization and molecular dynamics studies of new tumor-selective s-triazines targeting DNA and MMP-10/13 for halting colorectal and secondary liver cancers

  • Christine A. Morcos,
  • Nesreen S. Haiba,
  • Rafik W. Bassily,
  • Marwa M. Abu-Serie,
  • Amira F. El-Yazbi,
  • Omar A. Soliman,
  • Sherine N. Khattab,
  • Mohamed Teleb

DOI
https://doi.org/10.1080/14756366.2024.2423174
Journal volume & issue
Vol. 39, no. 1

Abstract

Read online

A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. 7a and 7g surpassed doxorubicin against HCT-116 cells regarding potency (IC50 = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). 7g was potent against liver cancer (HepG-2; IC50 = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). 7g surpassed NNGH against MMP-10 (IC50 = 0.205 μM) and MMP-13 (IC50 = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.

Keywords