Nature Communications (Sep 2022)

Batch effects removal for microbiome data via conditional quantile regression

  • Wodan Ling,
  • Jiuyao Lu,
  • Ni Zhao,
  • Anju Lulla,
  • Anna M. Plantinga,
  • Weijia Fu,
  • Angela Zhang,
  • Hongjiao Liu,
  • Hoseung Song,
  • Zhigang Li,
  • Jun Chen,
  • Timothy W. Randolph,
  • Wei Li A. Koay,
  • James R. White,
  • Lenore J. Launer,
  • Anthony A. Fodor,
  • Katie A. Meyer,
  • Michael C. Wu

DOI
https://doi.org/10.1038/s41467-022-33071-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Here, the authors present ConQuR, a conditional quantile regression method that removes microbiome batch effects through non-parametric modeling of complex microbial read counts, while preserving the signals of interest.