Remote Sensing (Jul 2019)

Examining the Deep Belief Network for Subpixel Unmixing with Medium Spatial Resolution Multispectral Imagery in Urban Environments

  • Yingbin Deng,
  • Renrong Chen,
  • Changshan Wu

DOI
https://doi.org/10.3390/rs11131566
Journal volume & issue
Vol. 11, no. 13
p. 1566

Abstract

Read online

Mixed pixels in medium spatial resolution imagery create major challenges in acquiring accurate pixel-based land use and land cover information. Deep belief network (DBN), which can provide joint probabilities in land use and land cover classification, may serve as an alternative tool to address this mixed pixel issue. Since DBN performs well in pixel-based classification and object-based identification, examining its performance in subpixel unmixing with medium spatial resolution multispectral image in urban environments would be of value. In this study, (1) we examined DBN’s ability in subpixel unmixing with Landsat imagery, (2) explored the best-fit parameter setting for the DBN model and (3) evaluated its performance by comparing DBN with random forest (RF), support vector machine (SVM) and multiple endmember spectral mixture analysis (MESMA). The results illustrated that (1) DBN performs well in subpixel unmixing with a mean absolute error (MAE) of 0.06 and a root mean square error (RMSE) of 0.0077. (2) A larger sample size (e.g., greater than 3000) can provide stable and high accuracy while two-RBM-layer and 50 batch sizes are the best parameters for DBN in this study. Epoch size and learning rate should be decided by specific applications since there is not a consistent pattern in our experiments. Finally, (3) DBN can provide comparable results compared to RF, SVM and MESMA. We concluded that DBN can be viewed as an alternative method for subpixel unmixing with Landsat imagery and this study provides references for other scholars to use DBN in subpixel unmixing in urban environments.

Keywords