Scientific Reports (Sep 2023)

Valproate regulates inositol synthesis by reducing expression of myo-inositol-3-phosphate synthase

  • Kendall C. Case,
  • Rachel J. Beltman,
  • Mary Kay H. Pflum,
  • Miriam L. Greenberg

DOI
https://doi.org/10.1038/s41598-023-41936-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Inositol depletion is a hypothesized mechanism of action of mood stabilization drugs used in the treatment of bipolar disorder. It was previously reported that the mood stabilizer valproate (VPA) increased phosphorylation of myo-inositol-3-phosphate synthases (MIPS), the rate limiting enzyme of inositol synthesis. Phosphosites were identified and examination of site-directed mutants suggested that phosphorylation leads to decreased enzymatic activity. In this study, we examined the extent of MIPS phosphorylation in response to VPA and used two interaction screens to identify protein kinases that interact with MIPS. Using an epitope tagged MIPS construct, we determined the fraction of phosphorylated MIPS to be very low (less than 2% of total), and we could not detect phosphorylation of untagged MIPS in response to VPA. In vitro analyses of phosphorylation revealed that putative protein kinases, PKC and CKII, have low specificity toward MIPS. These findings suggest that VPA likely depletes inositol via a mechanism other than MIPS phosphorylation. Consistent with this, mRNA levels of the MIPS-encoding gene INO1 and MIPS protein levels were significantly reduced during the mid-log growth phase in response to VPA treatment. These findings suggest that the mechanism whereby VPA causes inositol depletion is by reducing expression of the rate-limiting enzyme MIPS.