Nuclear Engineering and Technology (Mar 2024)
Thermal study of the emergency draining tank of molten salt reactor
Abstract
In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.