Soil Systems (Jan 2024)

Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils

  • Enilson de Barros Silva,
  • Múcio Mágno de Melo Farnezi,
  • Lauana Lopes dos Santos,
  • Alexandre Chistofaro Silva,
  • Paulo Henrique Grazziotti,
  • Luís Reynaldo Ferracciú Alleoni,
  • Ingrid Horák-Terra,
  • Sandra Antunes do Nascimento,
  • Bento Gil Uane

DOI
https://doi.org/10.3390/soilsystems8010017
Journal volume & issue
Vol. 8, no. 1
p. 17

Abstract

Read online

Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of Ni on the growth and phytolith yield of grasses in two artificially contaminated soils. Two experiments separated by soil types (Typic Quartzipsamment and Rhodic Hapludox) were conducted in a completely randomized design in a 2 × 4 factorial scheme with three replications. The factors were two species of grass (Urochloa decumbens and Megathyrsus maximus) and three concentrations of Ni (20, 40, and 120 mg kg−1) and control treatment. The grasses were influenced by the increase in Ni rates in the soils. Ni exerted a micronutrient function with the addition of 30 mg kg−1 of Ni in soils, but this concentration caused toxicity in grasses. Such a level is lower than the limits imposed by the Brazilian environmental legislation. Higher Ni availability in Typic Quartzipsamment promoted Ni toxicity, with reduced growth and increased phytolith yield in the shoot, increased Ni in the shoot, and Ni occlusion in phytoliths by grasses, in comparison with Rhodic Hapludox. The yield and Ni capture in phytoliths by grasses in Ni-contaminated soils are related to the genetic and physiological differences between grasses and Ni availability in soils. Ni capture by phytoliths indicates that it may be one of the detoxification mechanisms of Urochloa decumbens to Ni contamination, providing additional tolerance. Megathyrsus maximus may be a future grass for the phytoremediation technique in Ni-contaminated soils.

Keywords