A Study on the Ability of Nanomaterials to Adsorb NO and SO<sub>2</sub> from Combustion Gases and the Effectiveness of Their Separation
Marius Constantinescu,
Felicia Bucura,
Antoaneta Roman,
Oana Romina Botoran,
Roxana-Elena Ionete,
Stefan Ionut Spiridon,
Eusebiu Ilarian Ionete,
Anca Maria Zaharioiu,
Florian Marin,
Silviu-Laurentiu Badea,
Violeta-Carolina Niculescu
Affiliations
Marius Constantinescu
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Felicia Bucura
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Antoaneta Roman
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Oana Romina Botoran
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Roxana-Elena Ionete
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Stefan Ionut Spiridon
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Eusebiu Ilarian Ionete
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Anca Maria Zaharioiu
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Florian Marin
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Silviu-Laurentiu Badea
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Violeta-Carolina Niculescu
National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
Climate neutrality for the year 2050 is the goal assumed at the level of the EU27+UK. As Romania is no exception, it has assumed the gradual mitigation of pollution generated by the energy sector, and by 2030, according to ‘Fit for 55’, the share of energy from renewable sources must reach 42.5% from total energy consumption. For the rest of the energy produced from traditional sources, natural gas and/or coal, modern technologies will be used to retain the gaseous noxes. Even if they are not greenhouse gases, NO and SO2, generated from fossil fuel combustion, cause negative effects on the environment and biodiversity. The adsorption capacity of different materials, three nanomaterials developed in-house and three commercial adsorbents, both for NO and SO2, was tackled through gas chromatography, elemental analysis, and Fourier-transform infrared spectroscopy. Fe-BTC has proven to be an excellent material for separation efficiency and adsorption capacity under studied conditions, and is shown to be versatile both in the case of NO (80.00 cm3/g) and SO2 (63.07 cm3/g). All the developed nanomaterials generated superior results in comparison to the commercial adsorbents. The increase in pressure enhanced the performance of the absorption process, while temperature showed an opposite influence, by blocking the active centers on the surface.