Journal of Photochemistry and Photobiology (Feb 2024)

SuperDopa (SD), SuperDopa amide (SDA) and Thioredoxin-mimetic peptides protect ARPE-19 cells from photic- and non-photic stress

  • Magdalena M Olchawa,
  • Grzegorz Szewczyk,
  • Marva Lachish,
  • Tadeusz Sarna,
  • Daphne Atlas

Journal volume & issue
Vol. 19
p. 100225

Abstract

Read online

Oxidative stress and inflammation in the retinal pigment epithelium (RPE) cells have been identified as significant risk factors in the development and progression of retinal associated diseases including age-related macular degeneration (AMD). In addition, AMD and myopia have been associated with impaired dopamine activity. Treatment of RPE cells with antioxidants or high concentrations of l-DOPA (levodopa), which down-regulates vascular endothelial growth factor (VEGF) via a G-protein-coupled receptor GPR143, slow AMD progression. To develop a targeted and effective treatment aimed at improving the viability of RPE cells we examined small molecular weight thiol-based and levodopa containing molecules. These include the N-acetylcysteine amide (AD4/NACA), SuperDopa-Amide (SDA), and members of the thioredoxin mimetic (TXM) family of peptides, TXM-CB13, TXM-CB30, and SuperDopa (SD). We show that these antioxidant/anti-inflammatory reagents protect ARPE-19 cells from photic stress mediated by rose Bengal (rB) and rhodopsin-rich POS, and from non-photic stress induced by oxidation with sodium iodate. Protection is correlated with a reduction in DPPH radical and singlet-oxygen quenching. Compared to GSH the bimolecular rate-constants of singlet oxygen quenching in aqueous solution by the levodopa derivatives SD and SDA were two-fold higher. Inhibition of auranofin-induced activation of the mitogen-activation-kinases (MAPK's) JNK1/2 and ERK1/2 confirmed the antioxidant/anti-inflammatory activity of the thiol-levodopa derivatives. The antioxidant and radical scavenging activities of TXM-CB13 and TXM-CB30, or SD and SDA, which combine redox activity with elevating cellular levodopa, might offer an efficient protection of RPE cells. These retino-protective peptides are potential drug candidates destined for slowing the onset and/or progression of RPE-related disorders.

Keywords