Molecules (Jun 2022)
Effect of TiO<sub>2</sub> Calcination Pretreatment on the Performance of Pt/TiO<sub>2</sub> Catalyst for CO Oxidation
Abstract
In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various characterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 °C) prepared by TiO2 after calcination pretreatment at 700 °C exhibits a superior CO oxidation activity at low temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size, thereby increasing the CO oxidation activity of the Pt/TiO2 (700 °C) catalyst.
Keywords