Nature Communications (Jan 2024)
Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections
Abstract
Abstract Chiral sensing of single molecules is vital for the understanding of chirality and their applications in biomedicine. However, current technologies face severe limitations in achieving single-molecule sensitivity. Here we overcome these limitations by designing a tunable chiral supramolecular plasmonic system made of helical oligoamide sequences (OS) and nanoparticle-on-mirror (NPoM) resonator, which works across the classical and quantum regimes. Our design enhances the chiral sensitivity in the quantum tunnelling regime despite of the reduced local E-field, which is due to the strong Coulomb interactions between the chiral OSs and the achiral NPoMs and the additional enhancement from tunnelling electrons. A minimum of four molecules per single-Au particle can be detected, which allows for the detection of an enantiomeric excess within a monolayer, manifesting great potential for the chiral sensing of single molecules.