Full Counting Statistics of Electrons through Interaction of the Single Quantum Dot System with the Optical Field
Weici Liu,
Faqiang Wang,
Zhilie Tang,
Ruisheng Liang
Affiliations
Weici Liu
Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, and Guangdong Laboratory of Quantum Engineering and Quantum Materials, School of physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Faqiang Wang
Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Zhilie Tang
Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, and Guangdong Laboratory of Quantum Engineering and Quantum Materials, School of physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Ruisheng Liang
Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
In this paper, using the particle-number-resolved master equation, the properties of full counting statistics (FCS) are investigated for a single quantum dot (QD) system interacting with optical fields in the thermal state, Fock state, coherent state, and coherent state with random phase. In these diverse quantum states of optical fields, average tunneling currents have different step shoulder heights at a lower bias voltage with the same light intensity, and a staircase-shaped current can be induced unexpectedly in vacuum state optical field. The characteristics of the Fano factor and skewness in the coherent state differ from those in all of the other cases. For avalanche-like transport at a lower bias voltage, the mechanism is a dynamical channel blockade in a moderate electron–photon interaction regime. There is a pronounced negative differential conductance that results from tuning the phase of the coherent state optical field in a symmetric QD system.