Analysis of the electrical conductivity and activation energies of bismuth titanate (Bi4Ti3O12)
Carmen Martínez-Morales,
Paulina Arellanes-Lozada,
Josué López Rodríguez,
Antonio Romero-Serrano,
D. González-García
Affiliations
Carmen Martínez-Morales
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería en Metalurgia y Materiales, UPALM-Zacatenco, Av. Instituto Politécnico Nacional s/n, Ciudad de México, CP, 07738, Mexico; Corresponding author.
Paulina Arellanes-Lozada
Gerencia de Investigación en Explotación, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Col. San Bartolo Atepehuacan, 07738, Mexico City, Mexico
Josué López Rodríguez
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería en Metalurgia y Materiales, UPALM-Zacatenco, Av. Instituto Politécnico Nacional s/n, Ciudad de México, CP, 07738, Mexico; Corresponding author.
Antonio Romero-Serrano
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería en Metalurgia y Materiales, UPALM-Zacatenco, Av. Instituto Politécnico Nacional s/n, Ciudad de México, CP, 07738, Mexico
D. González-García
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería en Metalurgia y Materiales, UPALM-Zacatenco, Av. Instituto Politécnico Nacional s/n, Ciudad de México, CP, 07738, Mexico
In this study, bismuth titanate (Bi4Ti3O12) was synthesized from pure solid compounds and structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrical properties were evaluated by measuring the electrical conductivity of Bi4Ti3O12 at various oxygen partial pressures (pO2 = 10−5 and 10−8 atm) and temperatures (450 °C-750 °C). The electrical conductivity behavior was assessed during the heating and cooling processes. The material activation energies were determined based on the heating curve, which displayed Arrhenius-type behavior and activation energy slope changes, which could be attributed to point defects. When the temperature was increased from 450 °C to 750 °C at oxygen partial pressures pO2 = 10−5 atm, the electrical conductivity increased by about 62.9 %, whereas when the temperature decreased from 750 °C to 450 °C, the electrical conductivity was reduced by 35.95 %. The electrical behavior of Bi4Ti3O12 was analyzed by establishing its electrical conductivity and chemical activity under different oxygen partial pressures and heating-cooling conditions can allow the synthesis of materials with attractive characteristics for electronic applications.