Molecules (Jul 2018)

A Self-Assembled ZnII-NdIII Heterohexanuclear Dimer Based on a Hexadentate N2O4-Type Ligand and Terephthalic Acid: Synthesis, Structure, and Fluorescence Properties

  • Li-Jun Ru,
  • Lei Gao,
  • Wen-Ting Guo,
  • Jian-Chun Ma,
  • Wen-Kui Dong

DOI
https://doi.org/10.3390/molecules23071609
Journal volume & issue
Vol. 23, no. 7
p. 1609

Abstract

Read online

A self-assembled ZnII-NdIII heterohexanuclear coordination compound [Zn4Nd2(L)4(bdc)2]·2NO3 based on a hexadentate Salamo-like chelating ligand (H2L = 1,2-bis(3-methoxysalicylideneaminooxy)ethane]) and H2bdc (H2bdc = terephthalic acid) has been synthesized and characterized by elemental analyses, IR and UV/Vis spectra, and X-ray crystallography. Two crystallographically equivalent [Zn2Nd(L)2] moieties lie in the inversion center linked by two (bdc)2− ligands leading to a heterohexanuclear dimer in which the carboxylato group bridges the ZnII and NdIII atoms. The heteropolynuclear 3d-4f coordination compound includes four ZnII atoms, two NdIII atoms, four completely deprotonated (L)2− units, two fully deprotonated (bdc)2− units, and two crystalling nitrate ions. All of the ZnII atoms in the ZnII-NdIII coordination compound possess trigonal bipyramidal geometries and the NdIII atoms possess distorted bicapped square antiprism coordination arrangements. In addition, the fluorescence properties of the ligand and the ZnII-NdIII coordination compound were investigated.

Keywords