Mathematical Biosciences and Engineering (Sep 2021)
Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data
Abstract
Cardiovascular and cerebrovascular diseases are leading causes of death worldwide, accounting for more than 40% of all deaths in China. Acute myocardial infarction (AMI) is a common cardiovascular disease and traditionally divided into ST-segment (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI), which are known with different prognoses and treatment strategies. However, key regulatory genes and pathways involved in AMI that may be used as potential biomarker for prognosis are unknown. In this study, we employed both bulk and single-cell RNA-seq to construct gene regulatory networks and cell-cell communication networks. We first constructed weighted gene co-expression networks for differential expressed genes between STEMI and NSTEMI patients based on whole-blood RNA-seq transcriptomics. Network topological attributes (e.g., node degree, betweenness) were analyzed to identify key genes involved in different functional network modules. Furthermore, we used single-cell RNA-seq data to construct multilayer signaling network to infer regulatory mechanisms of the above key genes. PLAUR (receptor for urokinase plasminogen activator) was found to play a vital role in transducing inter-cellular signals from endothelial cells and fibroblast cells to intra-cellular pathways of myocardial cells, leading to gene expression involved in cellular response to hypoxia. Our study sheds lights on identifying molecular biomarkers for diagnosis and prognosis of AMI, and provides candidate key regulatory genes for further experimental validation.
Keywords