Advances in micropropagation, somatic embryogenesis, somatic hybridizations, genetic transformation and cryopreservation for Passiflora improvement
Mohammad Aqa Mohammadi,
Myat Hnin Wai,
Hafiz Muhammad Rizwan,
Abdul Qahar Qarluq,
Mengjie Xu,
Lulu Wang,
Yan Cheng,
Mohammad Aslam,
Ping Zheng,
Xiaomei Wang,
Wenbin Zhang,
Yuan Qin
Affiliations
Mohammad Aqa Mohammadi
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Myat Hnin Wai
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Hafiz Muhammad Rizwan
Institute of Advanced Study, Shenzhen University
Abdul Qahar Qarluq
College of Agriculture, Alberoni University
Mengjie Xu
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Lulu Wang
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Yan Cheng
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Mohammad Aslam
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Ping Zheng
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Xiaomei Wang
Institute of Horticultural Research, Nanning Investigation Station of South Subtropical Fruit Trees, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture
Wenbin Zhang
Xinluo Breeding Center for Excellent Germplasms
Yuan Qin
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University
Abstract Passion fruit is an essential commercial plant in the tropics and subtropics, which has lately seen a rise in demand for high-quality fruits and large-scale production. Generally, different species of passion fruit (Passiflora sp.) are propagated by sexual reproduction. However, asexual reproduction, such as stem cuttings, grafting, or tissue culture, is also available and advantageous in many instances. Recent research on passion fruit has concentrated on improving and establishing methodologies for embryogenesis, clonal proliferation via (somatic embryos), homozygote regeneration (by anther culture), germplasm preservation (via cryopreservation), and genetic transformation. These developments have resulted in potentially new directions for asexual propagation. Even though effective embryo culture and cryogenics are now available, however the limited frequency of embryogenic callus transformation to ex-vitro seedlings still restricts the substantial clonal replication of passion fruit. Here, in this review the advancement related to biotechnological approaches and the current understanding of Passiflora tissue culture. In vitro culture, organogenesis, cryopreservation, breeding, and productivity of Passiflora will significantly improve with novel propagation approaches, which could be applied to a wider range of germplasm.