Scientific Reports (Jun 2024)

Cathepsins L and B target HIF1α for oxygen-independent proteolytic cleavage

  • Sarah Stuart,
  • Daniel Tarade,
  • Michael Ohh

DOI
https://doi.org/10.1038/s41598-024-65537-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.