Air, Soil and Water Research (Apr 2022)
Assessment of the Potential for the Formation of a Circular Phosphorus Cycle Using Substance Flow Analysis Based on Reports from Malaysia
Abstract
Sustainability of phosphorus (P) requires detailed and serious key management strategies to control the P flow balance across the environmental systems. During the 1970s, the reserve of phosphate in Malaysia was at its highest level, which led to a decline in resources to the continuous demand increased the import trading of these resources from foreign countries. Consequently, the increased import rate led to imbalanced essential nutrient flow that could impact the national security. The depletion of P reserves initiated in the 1970s triggered the Malaysian government to act quickly by comparing the performance of P accounting indicators according to its primary flow in different ministries. However, the capital injections to Small Medium Industry (SMI) and non-SMI players that increased since the mid-2000s returned the imbalanced P loss to normal. This study utilised extant literature for the development of guidelines in identifying ‘hotspots’ in P flow return, with particular emphasis on national P security achievements. Based on the findings, this study successfully documented the current research patterns of P flow in various systems related to the main P problems, evaluated flow chain requirements and possible impacts of P inputs-outputs, apart from developing solutions to guide policymakers in considering the aspects of substance flow analysis (SFA) approaches in establishing the national P modelling. To reduce the P nutrient leaching down to the levels observed in the early 1990s, a fundamental and better understanding of nutrient management practices coupled with minimised uncertainty of the P catchment scale is required. Monitoring the dispersion of P nutrient can prevent environmental degradation. In conclusion, this review provided a potential approach to achieve new management targets by proposing P load reduction strategies which focuses on the current trend of P demand-production for long-term sustainability of non-renewable resources.