ROS Induced by <i>Streptococcus agalactiae</i> Activate Inflammatory Responses via the TNF-α/NF-κB Signaling Pathway in Golden Pompano <i>Trachinotus ovatus</i> (Linnaeus, 1758)
Jie Gao,
Mingjian Liu,
Huayang Guo,
Kecheng Zhu,
Bo Liu,
Baosuo Liu,
Nan Zhang,
Dianchang Zhang
Affiliations
Jie Gao
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Mingjian Liu
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Huayang Guo
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Kecheng Zhu
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Bo Liu
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Baosuo Liu
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Nan Zhang
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Dianchang Zhang
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
Streptococcus agalactiae is common pathogenic bacteria in aquaculture and can cause mass mortality after fish infection. This study aimed to investigate the effects of S. agalactiae infection on the immune and antioxidant regulatory mechanisms of golden pompano (Trachinotus ovatus). Serum and liver samples were obtained at 0, 6, 12, 24, 48, 96, and 120 h after golden pompano infection with S. agalactiae for enzyme activity and gene expression analyses. After infection with S. agalactiae, the content of reactive oxygen species (ROS) in serum was significantly increased (p p p SOD, CAT, and GPx) in the liver increased and then decreased, reaching the maximum at 24 h, 48 h, and 24 h, respectively. During the experimental period, the mRNA expression levels of NF-κB-related genes of the inflammatory signaling pathway inhibitory κB (IκB) showed an overall decreasing trend (p TNF-α), interleukin-1β (IL-1β), IκB kinase (IKK), and nuclear factor NF-κB increased significantly (p S. agalactiae could activate internal regulatory signaling in the liver of golden pompano to induce defense and immune responses. This study is expected to lay a foundation to develop the healthy aquaculture of golden pompano and promote a more comprehensive understanding of its disease resistance mechanisms.