Nature Communications (Jun 2022)

Machine learning the metastable phase diagram of covalently bonded carbon

  • Srilok Srinivasan,
  • Rohit Batra,
  • Duan Luo,
  • Troy Loeffler,
  • Sukriti Manna,
  • Henry Chan,
  • Liuxiang Yang,
  • Wenge Yang,
  • Jianguo Wen,
  • Pierre Darancet,
  • Subramanian K.R.S. Sankaranarayanan

DOI
https://doi.org/10.1038/s41467-022-30820-8
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Exploration of metastable phases of a given elemental composition is a data-intensive task. Here the authors integrate first-principles atomistic simulations with machine learning and high-performance computing to allow a rapid exploration of the metastable phases of carbon.