Limnology and Oceanography Letters (Aug 2024)

Idiosyncratic phenology of greenhouse gas emissions in a Mediterranean reservoir

  • Eva Rodríguez‐Velasco,
  • Ignacio Peralta‐Maraver,
  • Andrés Martínez‐García,
  • Miriam García‐Alguacil,
  • Félix Picazo,
  • Rodrigo J. Gonçalves,
  • Cintia L. Ramón,
  • Rafael Morales‐Baquero,
  • Francisco J. Rueda,
  • Isabel Reche

DOI
https://doi.org/10.1002/lol2.10409
Journal volume & issue
Vol. 9, no. 4
pp. 364 – 375

Abstract

Read online

Abstract Extreme hydrological and thermal regimes characterize the Mediterranean zone and can influence the phenology of greenhouse gas (GHG) emissions in reservoirs. Our study examined the seasonal changes in GHG emissions of a shallow, eutrophic, hardwater reservoir in Spain. We observed distinctive seasonal patterns for each gas. CH4 emissions substantially increased during stratification, influenced predominantly by the increase in water temperature, net ecosystem production, and the decline in reservoir mean depth. N2O emissions mirrored CH4's seasonal trend, significantly correlating to water temperature, wind speed, and gross primary production. Conversely, CO2 emissions decreased during stratification and displayed a quadratic, rather than a linear relationship with water temperature—an unexpected deviation from CH4 and N2O emission patterns—likely associated with photosynthetic uptake of bicarbonate and formation of intracellular calcite that might be exported to sediments. This investigation highlights the imperative of integrating these idiosyncratic patterns into GHG emissions models, enhancing their predictive power.