BMC Genetics (Aug 2019)

Bos taurus–indicus hybridization correlates with intralocus sexual-conflict effects of PRDM9 on male and female fertility in Holstein cattle

  • Eyal Seroussi,
  • Andrey Shirak,
  • Moran Gershoni,
  • Ephraim Ezra,
  • Daniel Jordan de Abreu Santos,
  • Li Ma,
  • George E. Liu

DOI
https://doi.org/10.1186/s12863-019-0773-5
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Crossover localization during meiotic recombination is mediated by the fast-evolving zinc-finger (ZnF) domain of gene PRDM9. To study its impact on dairy cattle performance, we compared its genetic variation between the relatively small Israeli (IL) Holsteins and the North American (US) Holsteins that count millions. Results Initially, we analyzed the major BTA1 haplotypes present in IL Holsteins based on the 10 most telomeric SNPs of the BovineSNP50 BeadChip. Sequencing of representative haplotype carriers indicated that for all frequent haplotypes (> 6%), the variable PRDM9 ZnF array consisted of seven tandem ZnF repeats. Two rare haplotypes (frequency < 4%) carried an indicine PRDM9, whereas all others were variants of the taurine type. These two haplotypes included the minor SNP allele, which was perfectly linked with a previously described PRDM9 allele known to induce unique localization of recombination hotspots. One of them had a significant (p = 0.03) negative effect on IL sire fertility. This haplotype combined the rare minor alleles of the only SNPs with significant (p < 0.05) negative substitution effects on US sire fertility (SCR). Analysis of telomeric SNPs indicated general agreement of allele frequencies (R = 0.95) and of the substitution effects on sire fertility (SCR, R = 0.6) between the US and IL samples. Surprisingly, the alleles that had a negative impact on male fertility had the most positive substitution effects on female fertility traits (DPR, CCR and HCR). Conclusions A negative genetic correlation between male and female fertility is encoded within the BTA1 telomere. Cloning the taurine PRDM9 gene, which is the common form carried by Holsteins, we encountered the infiltration of an indicine PRDM9 variant into this population. During meiosis, in heterozygous males, the indicine PRDM9 variant may induce incompatibility of recombination hotspots and male infertility. However, this variant is associated with favorable female fertility, which would explain its survival and the general negative correlation (R = − 0.3) observed between male and female fertility in US Holsteins. Further research is needed to explain the mechanism underlying this positive effect and to devise a methodology to unlink it from the negative effect on male fertility during breeding.

Keywords