Brain and Behavior (Feb 2024)
Correlation analysis between cerebral microangiopathy and autonomic nervous dysfunction
Abstract
Abstract Objective Our study was conducted aimed at investigating the potential correlation between cerebral microangiopathy and autonomic nervous dysfunction. Methods We initially included 164 hospitalized patients with cerebral microangiopathy at our hospital from November 2019 to January 2021. Based on the inclusion and exclusion criteria, a final total of 162 patients with cerebral microangiopathy were selected. According to the patient's Autonomic Symptom Profile (ASP) score, patients with a score greater than 22 were categorized into a group with concomitant autonomic dysfunction (71 cases, combined group), while those with a score below 22 were categorized into a group of isolated cerebral microangiopathy (83 cases, cerebral microangiopathy group). The general data and laboratory examination results of the two groups were analyzed, and Pearson correlation analysis was performed to evaluate the correlation between cerebral microangiopathy and autonomic dysfunction, as well as the influencing factors of cerebral microangiopathy patients combined with autonomic dysfunction. Results There were no significant differences between the two groups in terms of sex, BMI, smoking, drinking, family dementia history, diabetes, hypothyroidism, carotid atherosclerosis, obstructive sleep apnea hypopnea syndrome, hyperuricemia, hyperlipidemia, chronic obstructive pulmonary disease, Hamilton Anxiety Scale score, Hamilton Depression Scale score, 24‐h mean systolic blood pressure (SBP), 24‐h mean diastolic blood pressure DBP, daytime mean systolic blood pressure (dSBP), daytime mean diastolic blood pressure, nighttime mean systolic blood pressure (nSBP), nighttime mean diastolic blood pressure, 24‐h systolic blood pressure standard deviation (SBPSD), 24‐h diastolic blood pressure standard deviation, daytime diastolic blood pressure standard deviation, nighttime diastolic blood pressure standard deviation (nDBPSD), nDBPSD (p > .05). However, significant differences were observed between the two groups regarding age, history of coronary heart disease, hypertension, leukoaraiosis, cognitive function, ASP score, SSR, 24‐h SBPSD, daytime systolic blood pressure standard deviation (dSBPSD), nighttime systolic blood pressure standard deviation (nSBPSD), standard deviation of RR interval (SDNN), root mean square value of successive RR interval difference (RMSSD), high‐frequency component (HF), and low‐frequency component (LF) (p .05), but there were significant differences in blood uric acid and homocysteine (Hcy) levels (p < .05). Age, history of leukoaraiosis, cognitive function assessment, blood uric acid, Hcy levels, 24‐h SBPSD, dSBPSD, and nSBPSD showed positive correlations with ASP scores and SSR in patients with cerebral microangiopathy (p < .001). In contrast, hypertension, SDNN, RMSSD, HF, and LF showed negative correlations with ASP scores and SSR (p < .001). Moreover, coronary heart disease was negatively correlated with ASP scores but positively correlated with SSR (p < .001). The independent variables included age, history of leukoaraiosis, cognitive function assessment, ASP score, SSR, blood uric acid, Hcy, bradykinin, coronary heart disease, hypertension, 24‐h SBPSD, dSBPSD, nSBPSD, SDNN, RMSSD, HF, and LF, which were indicators with differences in general data and laboratory indicators. The dependent variable was patients with cerebral microangiopathy combined with autonomic nervous dysfunction. The analysis results showed that age, history of leukoaraiosis, ASP score, SSR, 24‐h SBPSD, dSBPSD, nSBPSD, SDNN, RMSSD, HF, and LF were the influencing factors of patients with cerebral microangiopathy complicated with autonomic nervous dysfunction. Conclusion We demonstrates that age, history of leukoaraiosis, cognitive function assessment, blood uric acid, Hcy level, 24‐h SBPSD, dSBPSD, nSBPSD, blood pressure, SDNN, RMSSD, HF, LF, and coronary heart disease were highly associated with cerebral microangiopathy with autonomic dysfunction. Furthermore, the influencing factors of cerebral microangiopathy with autonomic dysfunction are age, history of leukoaraiosis, ASP score, SSR, blood pressure variability, and HRV.
Keywords