Stem Cell Research (Jan 2015)
Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells
Abstract
Neural stem/progenitor cells (NPCs) express a variety of asparagine-linked oligosaccharide chains, called N-glycans, on the cell surface, and mainly produce hybrid-type and complex-type N-glycans. However, the expression profiles and roles of N-acetylglucosaminyltransferase-V (GnT-V), an enzyme that forms β1,6-branched N-glycans, in NPCs remain unknown. In this study, cultured NPCs were prepared from adult or embryo cortex, and were maintained as either proliferating NPCs or differentiated cells in vitro. Analysis using reverse-transcriptase polymerase chain reaction, Western blot and lectin blot revealed that GnT-V and its reaction products were distinctly expressed in proliferating NPCs; moreover expression of GnT-V and its reaction products were markedly diminished in differentiated cells. In brain slices, many GnT-V-positive neurogenic cells were detected throughout the cerebral cortex on embryonic day 13, while only a few doublecortin (Dcx)- and GnT-V-double positive NPCs were detected around the subventricular zone of the lateral ventricle in the adult brain. However, in the mice in which motor function was spontaneously recovered after cryoinjury to the motor cortex, many Dcx- and GnT-V-double positive NPCs were found to have accumulated around the brain lesion of the adult cerebral cortex compared with the mice in which the function did not recover. These results indicate that GnT-V expression is under rigorous control during NPC differentiation. Furthermore, expression of GnT-V and its reaction products in NPCs may be necessary for the functional recovery after brain injury, and could be used as a marker for visualization of NPCs.