Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico
Abstract
Mangrove and seagrass habitats are important components of tropical coastal zones worldwide, and are conspicuous habitats of Centla Wetland Biosphere Reserve (CWBR) in Tabasco, Mexico. In this study, we examine food webs in mangrove- and seagrass-dominated habitats of CWBR using stable isotope ratios of carbon and nitrogen. Our objective was to identify the importance of carbon derived from mangroves and seagrasses to secondary production of aquatic consumers in this poorly studied conservation area. Carbon and nitrogen isotope ratios of basal sources and aquatic consumers indicated that the species-rich food webs of both habitats are dependent on riparian production sources. The abundant Red mangrove Rhizophora mangle appears to be a primary source of carbon for the mangrove creek food web. Even though dense seagrass beds were ubiquitous, most consumers in the lagoon food web appeared to rely on carbon derived from riparian vegetation (e.g. Phragmites australis). The introduced Amazon sailfin catfish Pterygoplichthys pardalis had isotope signatures overlapping with native species (including high-value fisheries species), suggesting potential competition for resources. Future research should examine the role played by terrestrial insects in linking riparian and aquatic food webs, and impacts of the expanding P. pardalis population on ecosystem function and fisheries in CWBR. Our findings can be used as a baseline to reinforce the conservation and management of this important reserve in the face of diverse external and internal human impacts.
Keywords