Sensors (Nov 2021)

The Impact of Attention Mechanisms on Speech Emotion Recognition

  • Shouyan Chen,
  • Mingyan Zhang,
  • Xiaofen Yang,
  • Zhijia Zhao,
  • Tao Zou,
  • Xinqi Sun

DOI
https://doi.org/10.3390/s21227530
Journal volume & issue
Vol. 21, no. 22
p. 7530

Abstract

Read online

Speech emotion recognition (SER) plays an important role in real-time applications of human-machine interaction. The Attention Mechanism is widely used to improve the performance of SER. However, the applicable rules of attention mechanism are not deeply discussed. This paper discussed the difference between Global-Attention and Self-Attention and explored their applicable rules to SER classification construction. The experimental results show that the Global-Attention can improve the accuracy of the sequential model, while the Self-Attention can improve the accuracy of the parallel model when conducting the model with the CNN and the LSTM. With this knowledge, a classifier (CNN-LSTM×2+Global-Attention model) for SER is proposed. The experiments result show that it could achieve an accuracy of 85.427% on the EMO-DB dataset.

Keywords