BMC Medical Informatics and Decision Making (Sep 2019)
Risk factor analysis of device-related infections: value of re-sampling method on the real-world imbalanced dataset
Abstract
Abstract Background The incidence of cardiac implantable electronic device infection (CIEDI) is low and usually belongs to the typical imbalanced dataset. We sought to describe our experience on the management of the imbalanced CIEDI dataset. Methods Database from two centers of patients undergoing device implantation from 2001 to 2016 were reviewed retrospectively. Re-sampling technique was used to improve the classifier accuracy. Results CIEDI was identified in 28 out of 4959 procedures (0.56%); a high imbalance existed in the sizes of the patient profiles. In univariate analyses, replacement procedure and male were significantly associated with an increase in CIEDI: (53.6% vs. 23.4, 0.8% vs. 0.3%, P 0.05). Conclusion The application of re-sampling techniques can generate useful synthetic samples for the classification of imbalanced data and improve the accuracy of predicting efficacy of CIEDI. The peri-operative assessment should be intensified in male and aged patients as well as patients receiving replacement procedures for the risk of CIEDI.
Keywords